64 research outputs found

    Continuous twin screw granulation : robustness of lactose/MCC-based formulations

    Get PDF
    In recent years, significant progress has been made in the field of continuous twin screw granulation. However, only limited knowledge is currently available on the impact of active pharmaceutical ingredient (API) properties on granule quality and processability. In this study, the response behavior of four formulations containing APIs (5–10% drug load) with diverse characteristics was compared to the behavior of the corresponding placebo formulation consisting of lactose, microcrystalline cellulose (MCC) and hydroxypropylmethylcellulose (HPMC). API selection was based on extensive material characterization, combining conventional testing with in silico descriptors. For each formulation, a design of experiments was set up, evaluating the impact of liquid to solid (L/S) ratio and screw speed. Response ranges, response behavior and processability of each of the four formulations proved very similar to the placebo formulation when an appropriate center point L/S ratio was chosen. Hence, this robust placebo formulation could prove useful by decreasing drug product development time and consequently providing patients with a faster access to innovative medicine. Additionally, APIs with similar properties exhibited highly comparable response behavior at similar L/S ratios, indicating the potential use of surrogate APIs in novel drug product development

    Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury

    Get PDF
    Background: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNF alpha and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNF alpha in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNF alpha compared to wild-type cells under inflammatory conditions. Conclusions; Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.Peer reviewe

    Novel Neuroprotective Strategies in Ischemic Retinal Lesions

    Get PDF
    Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i) urocortin 2; (ii) a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii) a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv) a novel poly(ADP-ribose) polymerase inhibitor (HO3089). The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques

    Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide widely distributed throughout the body, including the gastrointestinal tract. Several effects have been described in human and animal intestines. Among others, PACAP infl uences secretion of intestinal glands, blood fl ow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide with strong anti-apoptotic, anti-infl ammatory, and antioxidant effects. The present review gives an overview of the intestinal protective actions of this neuropeptide. Exogenous PACAP treatment was protective in a rat model of small bowel autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious effects of ischemia on oxidative stress markers and cytokines. Another series of experiments investigated the role of endogenous PACAP in intestines in PACAP knockout (KO) mice. Warm ischemia–reperfusion injury and cold preservation models showed that the lack of PACAP caused a higher vulnerability against ischemic periods. Changes were more severe in PACAP KO mice at all examined time points. This fi nding was supported by increased levels of oxidative stress markers and decreased expression of antioxidant molecules. PACAP was proven to be protective not only in ischemic but also in infl ammatory bowel diseases. A recent study showed that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering from acute ileitis and was able to reduce the ileal expression of proinfl ammatory cytokines. We completed the present review with recent clinical results obtained in patients suffering from infl ammatory bowel diseases. It was found that PACAP levels were altered depending on the activity, type of the disease, and antibiotic therapy, suggesting its probable role in infl ammatory events of the intestine

    Geochemical Aspect of Chemolithoautotrophic Bacterial Activity in the Role of Black Shale Hosted Mn Mineralization, Jurassic Age, Hungary, Europe

    No full text
    出版者照会後に全文公開The black shale-hosted ÚRKÚT Mn-mineralization is among the 10 largest deposits in the World. In this study optical and electron microscopy demonstrated the biological formation of Mn-Fe minerals in Mn-carbonate ores. The ED-XRF elemental content maps and SEM-EDX observation of the ores showed distribution of Mn, Fe, and Si banded layer structure whereas the Mg, Al, and K are randomly distributed, as well as to explain the role of microorganisms associated with Ca and P. In both samples abundant microorganisms were found in the dark brown and white layers. Optical micrographs of thin sections clearly showed various shapes of cellular materials, such as spherule, oval, and filamentous morphologies. SEM-EDX observation revealed Fe-rich and P-Ca components around microorganisms showing spherule, tubular, and filamentous cells. The present investigation strongly suggests that the Mn-Fe and Si minerals were associated with microorganisms as a biological organic product. The identity of the bacteria responsible for Mn mineral formation is unknown, but is tentatively assigned to Mn and Fe bacteria on the basis of morphology. The genesis of rocks and minerals have played a pivotal role in Toarcian age, and they may even have acted as life genetic system
    corecore